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We show that theories of response scheduling for sequential action can be discriminated on the basis of
their predictions for the dynamic range of response set activation during sequencing, which refers to the
momentary span of activation states for completed and to-be-completed actions in a response set. In
particular, theories allow that future actions in a plan are partially activated, but differ with respect to the
width of the range, which refers to the number of future actions that are partially activated. Similarly,
theories differ on the width of the range for recently completed actions that are assumed to be rapidly
deactivated or gradually deactivated in a passive fashion. We validate a new typing task for measuring
momentary activation states of actions across a response set during action sequencing. Typists recruited
from Amazon Mechanical Turk copied a paragraph by responding to a “go” signal that usually cued the
next letter but sometimes cued a near-past or future letter (n�3, �2, �1, 0, �2, �3). The activation
states for producing letters across go-signal positions can be inferred from RTs and errors. In general, we
found evidence of graded parallel activation for future actions and rapid deactivation of more distal past
actions.

Public Significance Statement
During a paragraph typing task, we interrupted typist’s action planning by shifting them to an
unexpected location in a word, forcing them to restart typing at the cued letter. Reaction times were
fastest when the cue indicated the expected next letter in a sequence, and increased in a graded
fashion as the cued letter moved away from the expected next letter. These findings contribute to our
basic understanding of the processes enabling actions to be produced in an intended order, and are
consistent with inhibitory theories suggesting that planned responses in a sequence inhibit one
another allowing more active responses early in a sequence to be produced before less active
responses later in a sequence.
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The ability to produce actions in series over time is fundamental
to performance. For example, ordering action is necessary for
routine skills from walking, talking, writing, typing, tying shoes,
and making coffee, to dazzling ones in the arts, dance, music, and
sports. How ordering processes produce actions in sequence per-
sists as an unresolved aspect of the long-standing serial order
problem (Lashley, 1951). Currently, there are many models spec-
ifying how action sequences are produced, but few empirical tests
to discriminate between model assumptions. We identify the issue
of response set dynamics as fertile ground for testing major divides
in assumptions between models. Response set dynamics refers to

momentary changes in the activation levels of action units during
production of a series of actions. All models make similar predic-
tions about the momentary activation levels for actions that win the
response competition race and are ultimately produced: Each re-
sponse winner had the highest activation level at each moment in
time. However, models make different predictions about the mo-
mentary activation levels for the other responses in the race. Some
models allow parallel activation of responses and assume a wide
range of activation dynamics across the response set, and others
use serial triggering of responses and assume a narrow range of
activation dynamics across the response set. We introduce a new
behavioral tool using typing performance as a proxy for response
scheduling that measures the activation states of completed, cur-
rent, and to-be-completed responses as they change during pro-
duction of an action sequence. The measure traces the width of
activation dynamics across responses in a set and provides a novel
means to distinguish models of action sequencing.

The Response Race Metaphor for Sequencing Actions

People routinely produce many kinds of action sequences to
achieve various task goals. Functionally speaking, this ability
requires a set of responses and a sequencing process for outputting
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them in a desired temporal order. Traditionally, the production of
single responses are understood in terms of race models, in which
evidence for a response accumulates over time until a threshold
triggering the action is reached (Laming, 1968; Ratcliff, Van
Zandt, & McKoon, 1999; Smith & Vickers, 1988). We use a race
metaphor for the sequencing of multiple actions to highlight crit-
ical distinctions between models of the sequencing process.

This simple metaphor can be understood in the context of
discussing the general patterns of activation that can occur when
executing a sequence of serial responses. In this sense, the runners
act as individual elements of an action sequence, and the finish line
represents the execution of an element. The problem of explaining
the sequencing process is to delineate how different responses
cross the finish line (e.g., reach their execution threshold) in
desired orders and times. Different models of the sequencing
process all accomplish the functional goals of action sequencing,
but do so according to different processing assumptions. Prior
work has empirically tested model assumptions by measuring
directly observable aspects of action sequencing, such as the
accuracy and timing of responses. That is, they measured the
timing and order of the winners as they crossed the finish line.
Critically, models make different assumptions about the activation
states of other responses in the race; however, the activation values
of other responses are never measured directly, but are usually
inferred by patterns of errors among the winners.

To highlight fundamental differences between models of se-
quencing, we distinguish between two kinds of races for serial
order: the 100-yard dash versus a relay race. In the 100-yard dash,
all runners line up and race toward the finish line in parallel. In a
relay race, the runners are staggered apart from one another, and
begin running when the baton is in reach. In both races, the timing
and order of the responses is determined by the timing and order
of runners as they cross the finish line. The two races emphasize
different kinds of control over finishing orders. A real-world
100-yard dash does not control order in the sense that all of the
runners are trying to win first place. However, orders could be

established by a process that coordinates individual running speeds
over the course of the dash such that particular runners finish in
particular places. In a relay race, there are multiple finishing lines
corresponding to locations on the track where runners within a
team hand off the baton, and control over ordering is determined
by initial starting positions of the runners. The crucial difference
between races is whether runners are running in parallel or in
series one at a time, and the crucial difference between models of
action sequencing is whether they assume parallel or serial acti-
vation of responses within a response set. Before describing indi-
vidual models, we first illustrate general predictions for response
set dynamics that distinguish between serial and parallel models.

As mentioned previously, response set dynamics refer to the
activation states of individual action units as they change over time
during the course of producing a sequence of actions. Hypothe-
sized response set dynamics for serial and parallel ordering pro-
cesses are illustrated in Figure 1, which shows the hypothesized
activation states of individual responses in a five-element sequence
across time.

At the first time point, the serial process depicted in Figure 1A
activates the first response. Responses that reach threshold serve as
the triggering function for three events: the production of the
response, the self-termination or inhibition of that response, and
the activation of the next response. This domino-like process
continues for all responses in the sequence. Importantly, the dy-
namic range of activation states for all responses is always nar-
rowly focused around the current response. The current response
reaches threshold, deactivates, and triggers the activation of the
next response, but not more distal responses.

The parallel process depicted in Figured 1B activates the first
response, and also prescribes graded activation levels for the
remaining responses. The parallel model makes similar predictions
about the fate of completed responses, suggesting they are self-
terminated. Importantly, the dynamic range of activation states for
all responses is not narrowly focused around the current response,
but extends to the more distal responses.

Figure 1. The figure shows hypothesized activation states of all responses in a sequence across moments in
time. Figure 1A shows predictions for a serial model, in which only one action is activated at a time, showing
a narrow dynamic range. Figure 1B shows predictions for a parallel model in which all future actions are
activated in a graded fashion, showing a wide dynamic range.
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Serial Versus Parallel Processing Assumptions in
Models of Action Sequencing

The problem of explaining how actions are sequenced spans
decades of research and has generated several theoretical ap-
proaches to the problem. Each of the models invoke processing
assumptions that fall on either side of the serial versus parallel
distinction and assume narrower or wider dynamic ranges for the
activation levels of distal responses during response sequencing.
Here, we provide a review of several of the pertinent models.

Associative Chains

Prior to the cognitive revolution serial ordering was explained
by associative chains (Washburn, 1916; Watson, 1920). Here, a
stimulus serves as the triggering condition for a response: Feed-
back from action n serves as that triggering condition for action
n �1, n �2, and so on. Associative chain models have been widely
criticized (Lashley, 1951; see also Rosenbaum, Cohen, Jax, Weiss,
& van der Wel, 2007), particularly as explanations of complex
sequencing behavior as seen in language or music production.
Nevertheless, simple chaining models exemplify the general pre-
dictions of a serial control process for ordering. Specifically, they
predict a narrow dynamic range for the activation values within a
response set, because a next action is only activated by a previous
action. As a result, more distal responses in the chain are not
activated in advance of the preceding triggering condition.

Hierarchical Representations

The inability of simple associations to explain complex feats of
action sequencing contributed to the rise of cognitive explanations
using planning processes to explain ordering (Lashley, 1951;
Miller, Galantner, & Pribram, 1960; Tolman, 1948). A common
feature of planning models is the assumption of hierarchical rep-
resentation, in which higher order goal states (e.g., make a sand-
wich) trigger nested lower order goal states (go to the kitchen, find
the bread), and lower ones (open the bag, reach-in, etc.), and so on.
Some models using hierarchical representations rely on a serial
triggering process and imply a narrow dynamic. For example,
Rosenbaum, Kenny, and Derr (1983) illustrated two ways in which
responses might traverse through a hierarchically organized se-
quence. They described a linear read-out process whereby a cur-
rent response serves as the trigger for the next response (similar to
an associative chain). They also described a tree-traversal process
whereby the superordinate control nodes connecting groups of
response serves as the triggering condition for the next response.
The tree-traversal and linear read-out processes make different
predictions about the finishing times between responses; however,
they make the same predictions about momentary response set
dynamics. Specifically, they both imply a serial-triggering process
whereby distal future responses are not activated early in the
sequence, but are only activated by their preceding triggering
condition.

Hierarchical models could be modified to introduce a wider
spread of activation across the response set. For example, Cooper
and Shallice (2000, 2006) computationally implemented a hierar-
chical model of the everyday task of making coffee. Their model
has many nested levels of goal, subgoal, sub-sub-goal, and so forth

nodes that eventually control actions. The specific triggering con-
ditions for a particular action are not unitary because the activation
value for a particular response depends on inputs from multiple
higher order goal states; thus, the activation levels of all possible
responses vary dynamically beyond the range of the most current
responses.

Serial-Recurrent Networks

More complex associative models like serial-recurrent neural
networks (SRNs; Elman, 1990) can also be trained to produce
sequences of varying complexity. For example, SRNs have been
used to explain performance in the serial reaction time (RT) task
(Cleeremans, 1993), in which people show implicit learning of
sequential regularities. As well, Botvinick and Plaut (2004, 2006)
showed that an SRN can model routine tasks like coffee making
(when trained on appropriate inputs reflecting the constraints of
coffee making in a natural environment) without invoking hierar-
chical representations. The SRN is a flexible model and, in prin-
ciple, could be constructed to predict activation values for a single
or multiple upcoming response(s). So, from an SRN perspective,
the width of the dynamic range of the response set during response
sequencing is a free parameter.

Competitive Queuing

Competitive queuing models assume that responses are acti-
vated in a buffer (queue) and then compete for production by a
dynamic mutual inhibition process that determines the order of
responses. For example, Estes (1972) proposed that memory for
sequences originates from the order in which items are rehearsed
during encoding. Rehearsal was described by an inhibitory process
that could suppress rehearsal of any item. To rehearse items in
sequence, inhibition for particular items would be released one at
a time, and the remaining items would remain suppressed. De-
pending on how inhibition is applied, Estes’s description of com-
petitive queuing could produce either narrow or wide ranges of
activations for responses in a sequence.

Rumelhart and Norman’s (1982) model of skilled typing imple-
ments a version of competitive queuing that clearly allows for a
wide dynamic range of activation and inhibition. In their model,
word units cause parallel activation of letter units, and each letter
unit controls individual finger movements to type the key on the
keyboard. As a result, fingers can, in principle, move in parallel
toward the keys in proportion to their activation level. This, of
course, creates a problem for outputting the letters of word in a
desired order. Order is achieved by a mutual inhibition process that
establishes an activation gradient across the letters in the word:
The first letter inhibits all remaining letters, the second letter does
the same, and so on. Letters with the highest activation value are
typed when their finger has moved to their correct location. Letter
units become deactivated after they have triggered a keystroke.
Similarly, more recent hierarchical competitive queuing models
(Bullock, 2004; Bullock & Rhodes, 2003) are consistent with wide
dynamic ranges of activation in response sets during sequencing
because they assume parallel activation and lateral inhibitory con-
nections that apply across all responses.
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Oscillator Models

Oscillator models use timing signals to control the order of
responses. For example, Brown, Preece, and Hulme (2000) distin-
guish between response units that activate to produce specific
actions, and an oscillator-based timing system that controls the
order and timing of response unit activation. Oscillator models
assume that different responses are triggered at different times by
specific clock states. For example, while typing the word “CAGE,”
the 12:00 position could trigger the first letter “C.” Other clock
positions would trigger the remaining letters, and the temporal
differences between the clock positions would further determine
the specific intervals between the responses. Oscillator models
could be consistent with either a narrow or wide dynamic range of
response set activations during sequencing. A narrow range is
consistent with a highly precise temporal control signal that causes
activation only during the prescribed moment: When the moment
occurs, the chosen response is activated, but the other responses
are not. A wide range is consistent with a diffuse temporal control
signal that causes a gradient of activation around the prescribed
moment: Activation for the chosen response grows as the moment
approaches, and activation builds for all remaining responses de-
pending on the proximity to their temporal control signal.

Summary

All of the aforementioned models make predictions about the
width of the dynamic range of activation and inhibition across a
response set during action sequencing. The models fit into two
classes of race metaphors in which runners run in series, like a
relay race, or in parallel, like a 100-yard dash. Prior empirical work
has largely evaluated model predictions in terms of the timing and
order of runners (responses) as they cross the finish line. We
propose that another key distinguishing feature between models is
the dynamic range of activation across the response set at any
given moment during sequence execution. If the response race
could be paused whenever an action is produced, then the states of
the remaining responses could be observed to determine the width
of the dynamic range. Serial models suggest a narrow range
because only the next response is activated by a previous response,
and the remaining responses are not activated. Parallel models
suggest a wider range because all of the upcoming responses are in
some state of activation. The major aim of this article is to provide
a new behavioral measure of the dynamic range of activation of
responses during action sequencing. A measure of the dynamic
range could discriminate between serial versus parallel models and
place new constraints on models that are capable of flexibly
producing wide or narrow ranges.

Prior Empirical Work

Measuring the dynamic range of activation across a response set
at a particular moment in time is challenging because withheld
responses that may have varying activation states are, by defini-
tion, not behaviorally observable. An ideal measure would contin-
uously record activation states of all responses in a response set
during action sequencing. We review examples from prior work
that approximate the ideal measure, and then present our own
method for inferring momentary response set activation from RT
data.

Perhaps the most direct evidence for parallel models of action
sequencing comes from Averbeck, Chafee, Crowe, and Georgo-
poulos (2002), who used single-unit recording to measure firing
rates of neuronal ensembles in the prefrontal cortex (PFC) while
monkeys drew simple shapes like squares. They classified neurons
coding unique movements to produce different line segments and
plotted firing rates over time as the shape was produced. Prior to
drawing, they showed that all neuronal populations were firing (as
if in parallel), and that firing rates corresponded with serial order
for the upcoming movements. These findings are consistent with
parallel models predicting a wide dynamic range of response set
activation. Serial models would not predict above baseline firing
rates for neuronal populations assigned to line segments beyond
the first one. During drawing, firing rates peaked in series over
time as each line segment was produced. Firing rates for neuronal
populations assigned to an immediate next segment sometimes
appeared to rise immediately after a prior segment was completed
(as if being released from inhibition), and sometimes appeared to
gradually rise in parallel before completion of a prior segment—a
finding that is also consistent with a wide dynamic range of
response set activation.

Using Typing to Measure Dynamic Range of Response
Set Activation

Skilled typing ability is a convenient domain for examining
processes involved in sequencing actions (for a recent review,
see Logan & Crump, 2011). Typing naturally requires action
sequencing, and measurements of the timing and accuracy of
each action can be measured precisely from computer key-
boards. Moreover, typing is a common skill and skilled subjects
are readily available. Both behavioral and noninvasive neuro-
imaging studies of skilled typing lend support to parallel mod-
els of action sequencing.

As mentioned previously, Rumelhart and Norman’s (1982)
model of typing assumes keystrokes are sequenced by a com-
petitive queueing process: All letters in a word are activated in
parallel, and then lateral inhibitory connections allow key-
strokes to be executed in order. Two recent studies showed
behavioral evidence in favor of the parallel activation hypoth-
esis. Crump and Logan (2010b) presented subjects with a word
prime followed by a single-letter probe. They showed faster
RTs for single letters from the first, middle, and last position of
the word prime compared with unprimed letters. This finding is
consistent with the idea that a word causes parallel activation of
its constituent letters. Furthermore, priming effects were larger
for the first than middle and last letters, consistent with the
competitive queueing idea that later responses are inhibited by
earlier ones.

Snyder and Logan (2014) showed that parallel activation of
letters is constrained by their position in a word. They presented
subjects with a word prime followed by a word probe. The probe
matched the prime, was an anagram (same letters different order)
of the prime, or was an unrelated word (different letters). They
showed faster response times to type the probe only to the extent
that probe letters matched in both identity and order. They argued
that the absence of priming for anagrams was not consistent with
positional coding models that independently represent action iden-
tity and position: Anagrams should have activated the response
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identities, and that influence should have carried forward to influ-
ence response times during sequencing. They suggested their data
was more consistent with associative chaining because priming
was only observed for probes containing full or partial chains that
could be triggered by the prime.

One recent electroencephalography study also showed evidence
consistent with a wide dynamic range of response set activation
during typing. Logan, Miller, and Strayer (2011) had subjects type
four letter words that required one or both hands. Bimanual words
started with two or three letters from one hand, with remaining
letters from the other hand. They measured lateralized readiness
potential (LRP), an indication of preparatory motor activity for one
side of the body, time locked to the first keypress. LRP amplitudes
leading up to the first keystroke were larger for unimanual words
compared with bimanual words, with smaller amplitudes for words
containing more letters from the other hand after the first key-
stroke. The LRP results are consistent with parallel activation of
keystrokes beyond the first one, and are suggestive of a wide
dynamic range because LRP amplitude depended on the amount of
future keystrokes from one hand in the word.

Amazon Mechanical Turk

All subjects in each experiment were native English speakers
and were recruited via Amazon’s Mechanical Turk (AMT), an
online crowd-sourcing website. Subjects were compensated $1.00
for participating and could only participate in the experiment once.
If a subject failed to complete the experiment, they could not start
over or resume at a later time. The experiments were programmed
in JavaScript and HTML and run locally in subjects’ web brows-
ers.

AMT affords the opportunity to collect data from large, diverse
samples of the population, both quickly and inexpensively; how-
ever, employing AMT precludes the ability to control for certain
factors that would normally be controlled in the laboratory. For
example, visual angle and distance from the screen are left up to
the testing subject. Additionally, different web browsers and
screen resolutions result in the possibility that the materials may
not be rendered the same for all subjects. Subjects are likely using
different computers and completing the task in their own time,
with different typing styles (e.g., touch typing, hunt and peck).
Finally, we are unable to control for environmental distractions.
However, even with these limitations, AMT has been shown to be
a reliable data collection tool. Crump, McDonnell, and Gureckis
(2013) validated this online method as tool for conducting behav-
ioral experiments requiring millisecond precision for measuring
RTs (see also Barnhoorn, Haasnoot, Bocanegra, & van Steenber-
gen, 2014; Reimers & Maylor, 2005; Reimers & Stewart, 2015;
Schubert, Murteira, Collins, & Lopes, 2013; Simcox & Fiez,
2014). Additionally, Behmer and Crump (2015) have validated the
approach for measuring performance in continuous typing tasks.

Present Aims

We have identified the dynamic range of response activation for
all responses in an action sequence as an issue that can discrimi-
nate between models of action sequencing. We are not aware of
prior work, especially in human behavior, that has systematically
measured the dynamic range of response set activation over the

entire course of action sequencing. We report a modified go-signal
procedure that measures momentary response set activation, and
examine evidence for wide or narrow dynamic ranges in skilled
typing. Although our present efforts are limited to sequencing in
typing, we expect that the general issue of determining dynamic
range of response set activation is broadly applicable to other
sequencing tasks.

Experiment 1: Typing Words

Our procedure borrowed from prior work on stopping and
online revision during typing. Typists can quickly stop typing
when presented with a stop signal, even when they are in the
middle of a word (Logan, 1982; Salthouse & Saults, 1987). And
when to-be-typed words are changed midway through typing,
some typists are able to revise their plan and resume typing quickly
(Shaffer, 1988).

Combining these two procedures, we had typists stop typing in
the middle of a sequence and then immediately restart from dif-
ferent positions in the sequence. Typists were presented with a
paragraph of text and copied letters by following a go-signal that
turned cued letters red. The red letter was usually the next letter in
the sequence. However, occasionally the go-signal cued letters that
were plus or minus one to three letters away from the expected
next letter. The measures of interest were RTs and error rates for
resuming typing at each serial position cued by the go-signal.

In general, we assume that the activation states governing par-
ticular actions can be inferred from RTs and error rates. Strongly
activated action plans lead to faster RTs than weakly activated, or
inhibited, action plans. Similarly, strongly activated action plans
can also lead to errors when activation levels for an incorrect
action are greater than activation levels for a correct action. So, the
pattern of RTs and error rates across go-signal positions can be
used to infer momentary activation states of individual responses
in a current response set.

Models of action sequencing that predict a narrow or wide
dynamic range of response set activation make contrasting predic-
tions for performance in our task. Idealized predictions that are
broadly representative of predictions from each class of models are
illustrated in Figure 2. Importantly, both completed and future
responses can show activation states that are either wide or narrow.
For example, Panel D shows how future responses may be acti-
vated along a narrow range, with the immediate response being
active and future responses being inactive or inhibited. Con-
versely, Panel C shows future responses being active along a wide
range, with the current response being most active and future
responses displaying increased activation across a gradient. These
same predictions are applicable to completed actions as well
(Panels A and B). Additionally, activation states between com-
pleted and future responses may not necessarily be symmetrical.
For example, Rumelhart and Norman (1982) suggest that previous
responses in a sequence are actively inhibited, which would pro-
duce a pattern similar to Panel C. The fastest RT is for the current
letter in the sequence, and all recently typed letters are assumed to
be deactivated, so RTs would be similarly slow for all of those
serial positions. Conversely, future responses are competitively
queued across a wide dynamic range, similar to Panel B, so their
RTs systematically increase as a function of serial position. These
general predictions were tested in the following five experiments.
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Method

Subjects. Fifty subjects participated in Experiment 1. Seven
subjects failed to complete the task. Four subjects were rejected
from the final analysis for failing to meet minimum accuracy and
speed requirements (minimum 80% accuracy and 1,250-ms aver-
age RTs). These subject exclusion criteria were applied consis-
tently across all experiments. The remaining 39 subjects (mean
age � 38 years, SD � 11; 26 female, 12 male, one undefined)
reported having been typing for 21 years (SD � 10 years), and
started typing at 14 years old (SD � 6 years). Thirty-seven were
right-handed (one left-handed, one undefined), 24 reported that
they had received some type of formal typing training during K-12
education (15 indicated “no”), and 34 reported being able to touch
type (five indicated “no”).

Apparatus and stimuli. The experiment was programmed
using JavaScript and HTML. The program allowed subjects to
complete the task only if they were running Safari, Google
Chrome, or Firefox web browsers. Each experiment ran as a
pop-up window that filled the entire screen. The paragraph was
presented in the center of the screen in 20-point Helvetica font.
Text was black presented against a gray background. The go-signal
cue was colored red. Subjects typed one paragraph (approximately
115 words) chosen randomly from a set of 10 paragraphs about
border collies, taken from Logan and Zbrodoff (1998).

Design. Typists were presented with the paragraph and in-
structed to respond to each letter as soon as it turned red. The first
letter in the paragraph was displayed in red. Each response (correct

or incorrect) triggered the next go-signal, with a jittered delay (200
ms �random value between 0 and 300). The delay was included to
maintain vigilance and provide subjects with enough time to detect
the signal.

In general, most of the go-signals cued the immediate next letter
in the sequence, referred to as Position 0 throughout the manu-
script. The first 10 letters in a paragraph always cued Position 0.
After the first 10 letters, the go-signal cued the expected next letter
50% of the time, or another position between plus or minus one to
three letters from Position 0 (with equal probability). For example,
consider being cued to type “r” in the string, “The natural working
ability. . . .” After typing “r,” there was a 50% chance the go-signal
would cue the next letter “k,” or a roughly 8% chance it would cue
letters plus or minus one to three letters from “k” (�3 � w, �2 �
o, �1 � r, �1 � i, �2 � n, �3 � g). Go-signals always cued
characters and never cued spaces. Whenever a go-signal cued a
shifted letter (e.g., not Position 0), the following four go-signals
always cued the expected next letter (Position 0).

Procedure. All subjects were AMT workers who found the
experiment using the AMT system. The subject recruitment pro-
cedure and tasks were approved by the Brooklyn College Institu-
tional Review Board. Each subject read a short description of the
task and gave consent. Subjects then completed a short demo-
graphic survey and proceeded to the main task, in which they were
shown instructions and a to-be-typed paragraph. Subjects were in-
structed to begin by typing the red letter, and then wait for the next red
letter and type it as quickly and accurately as possible. They were also
told that the red letter would usually be the next letter in the sequence,
but sometimes it would be a different letter.

Results and Discussion

We collected accuracy and RT data for all five experiments. For
Experiment 1, correct RTs at each go-signal position for each
subject were submitted to an outlier elimination procedure (non-
recursive; Van Selst & Jolicoeur, 1994) that removed an average of
3% of observations. Our objective was to investigate whether
changes in activation states occurred across wide or narrow dy-
namic ranges. In order to accurately assess these differences, we
needed to address two possible confounds. First of all, if subjects
were shifted to a go-signal position where the letter they were
shifted to was the same letter they were planning to type in the
expected location, those trials were removed from the analysis. For
example, when subjects were typing the word “BELIEVED,” if
after typing “V,” subjects were shifted to the “E” at Go-Signal
Position �2 (the “E” that appears before “V”), that trial would be
removed because we could not discriminate whether the RTs for
that response represented the activation state of Go-Signal Position
0, or Go-Signal Position �2. Furthermore, we removed trials in
which the letter that was to be typed also appeared within a plus or
minus three-letter window surrounding the response. For example,
returning to the word “BELIEVED,” when typing the middle “E,”
it is difficult to parse out the influence the completed and future
“E” may have on the current “E” being typed. This removed an
average of 26% of observations from each condition. Table 1
shows the number of trials at each go-signal position analyzed for
all five experiments. Mean RTs for each participant at each go-
signal position were then submitted to separate repeated measures
ANOVAs, with go-signal position as the sole factor.
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Figure 2. General predictions for reaction times (RTs) for past and future
responses from wide or narrow models of action sequencing when stopping
typing and restarting in a different position. Narrow, or serial, models
predict that a completed action triggers the next, so only the fastest
response should be Position 0, which reflects the expected next letter in a
sequence. All future responses are not yet activated, and all past responses
are deactivated, so RTs are equivalent. Wide, or parallel, models predict
some graded activation for all future responses in the set, as well as the
possibility of gradual deactivation for completed responses. Importantly,
some models predict that future and past responses in a sequence can differ
across wide or narrow activation states. For example, Rumelhart and
Norman (1982) predict that future actions are activated across a wide
dynamic range, consistent with competitive queuing models (Panel B),
whereas past responses are rapidly deactivated, consistent with a narrow
range model for past responses (Panel C).
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Mean RTs as a function of go-signal position are displayed in
Figure 3A. The main effect of go-signal position was significant
for RTs, F(6, 222) � 70.4, Mean Squared Error (MSE) � 9,799,
p � .001, �p

2 � 0.66. The pattern of RTs across go-signal positions
appeared roughly symmetrical for completed (�1 to �3) versus
future (�1 to �3) actions. Each of these are analyzed in turn with
planned comparisons.

We predicted that the dynamic range of response set activation
could be measured by the pattern of RTs across past and future
go-signal positions. A narrow dynamic range assumes that only the
immediate next action (Go-Signal Position 0) is activated. A wider
dynamic range assumes graded activation across future actions;
however, all models similarly predict that responses rapidly deac-
tivate after completion. Thus, RTs should be equally slow across
all completed go-signal positions.

RTs. Subjects were faster at Go-Signal Position 0 (M � 535.8,
Standard Error (SE) � 16.2) compared with Go-Signal Posi-
tion �1 (M � 815.1, SE � 26.2), t(37) � �17.57, p � .001, and
Go-Signal Position �1 (M � 819.1, SE � 26.9), t(37) � 11.68,
p � .001. Additionally, they were faster at Go-Signal Position �1
compared with Go-Signal Position �2 (M � 890.6, SE � 29.1),
t(37) � �3.39, p � .001. However, there was no difference
between RTs at Go-Signal Position �2 compared with Go-Signal
Position �3 (M � 920.5, SE � 27.9), t(37) � �1.15, p � .26.
Subjects were faster at Go-Signal Position �1 compared with
Go-Signal Position �2 (M � 877.6, SE � 23.4, t(37) � 2.54, p �
.02. Finally, subjects were faster at Go-Signal Position �2 com-
pared with Go-Signal Position �3 (M � 920.5, SE � 27.9),
t(37) � 2.72, p � .01.

RTs for completed and future responses show evidence in favor
of a wide dynamic range. As predicted by both classes of models,
RTs were fastest at Go-Signal Position 0, which was always the
expected next letter that should have been most activated. Addi-
tionally, RTs for Go-Signal Position �1 were faster than Posi-
tion �2; however, RTs for Position �2 were not faster than
Position �3. This pattern is consistent with graded activation of
responses across a wide dynamic range.

Conversely, the observed pattern of RTs for completed actions
did not conform well to idealized model predictions. Specifically,
if all completed actions were immediately deactivated, then we
would have expected RTs to be equally slow for Positions �1
through �3. Instead, we observed graded RTs across those posi-
tions. One possibility is that deactivation of a completed response
unfolds gradually over time. Regardless, the pattern for completed

actions is consistent with graded activation of responses across a
wide dynamic range. This is consistent with findings from Aver-
beck et al., (2002) in which firing rates of neurons in the monkey
PFC did not immediately cease after monkeys completed drawing
a line, but instead gradually went back to baseline over a span of
200 to 500 ms.

One possible interpretation of these findings is that differences
in RTs are a function of visual search. During a conjunctive search,
RTs show a linear increase as the number of distractors increases.
Because the target and distractors share common features, these
searches tend to be difficult with a high number of distractors.
Conversely, during feature searches, the target and distractors
differ by a single property. Even when the number of distractors is
large, RTs tend to be fast because the target is easy to detect (A. M.
Treisman & Gelade, 1980). If our results were driven by visual
search, then the change in go-signal should have produced a
pop-out effect, and RTs would have been similarly fast at every
go-signal position. Instead we observed a nonlinear, exponential
pattern that reflects differences in activation states based on go-
signal position. Furthermore, to test for nonlinearity, we compared
the fits of linear and exponential functions to the RTs of future
go-signal position. For Experiment 1, exponential functions gave
better fits (r2 � .91, p � .03, AIC � 46.13) than linear functions
(r2 � .72, p � .10, Akaike’s Information Criterion (AIC) �
50.72).

Errors. The models do not make specific predictions about
errors; however, it is reasonable to assume that they would predict
that error rates should be highest for the most potent response,
which would be the planned letter. Mean error rates as a function
of go-signal position are displayed in Figure 3B. The main effect
of go-signal position was significant for errors, F(6, 222) � 12.3,
MSE � 0.010, p � .001, �p

2 � 0.25. The pattern of errors across
go-signal positions appeared roughly symmetrical for completed
(�1 to �3) versus future actions (�1 to �3).

Overall, errors were low, demonstrating that subjects could
perform the task. During Experiment 1, errors were lowest for
Go-Signal Position 0, highest for the next closest positions (�1,
and 1), and then gradually lower for more distal go-signal posi-
tions. Overall, one might expect that subjects would sometimes
commit perseveration errors by failing to detect the change in
go-signal position and type the letter expected at Position 0 instead
of the shifted letter. Figure 4A shows the proportions collapsed

Table 1
Number of Trials at Each Go-Signal Position in
Each Experiment

Experiment �3 �2 �1 0 1 2 3

Experiment 1 352 344 314 11,808 304 327 349
Experiment 2 394 401 373 15,662 375 198 420
Experiment 3 487 494 497 15,492 491 498 496
Experiment 4 276 278 359 10,618 270 269 285
Experiment 5 (p) 380 348 354 35,671 242 326 382
Experiment 5 (u) 514 474 472 417 467 474 475

Note. For Experiment 5, “p” is the number of observations at each go
signal for responses that were a part of the original sequence, and “u” is for
unplanned responses.

Figure 3. Mean reaction times (RTs; in ms) and error rates, with standard
errors as a function of go-signal position for Experiment 1. Go-signal
Position 0 refers to the expected next letter in the sequence.
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across all subjects, including those who did not make at least one
error in each position. An ANOVA analysis of perseveration errors
was not possible because only 20% of subjects made at least one
error in each position; however, according to independent samples
t tests, Position �1 (M � 0.92, SE � 0.04) and �1 (M � 0.94,
SE � 0.04) had higher rates of perseveration errors than Posi-
tions �2 (M � 0.76, SE � 0.07) and �2 (M � 0.68, SE � 0.10),
t(98) � 3.32, p � .001, which had higher rates than Position �3
(M � 0.51, SE � 0.10) and �3 (M � 0.46, SE � 0.11), t(83) �
2.38, p � .009. Figure 4B shows the mean error rates for go-signal
position after removing perseveration errors, F(6, 222) � 3.69,
MSE � 0.002, p � .008, �p

2 � 0.09. Error rates appear linear, with
proportional range of errors falling within 0.01 to 0.04. The fact
that perseveration errors varied by position is interesting. It may be
the case that subjects occasionally missed the go-signal position
shift, and the closer the shift was to Go-Signal Position 0, the more
likely subjects would commit a perseveration error. Responses to
more distal positions may have afforded subjects more time to
notice the change, thereby leading to a decrease in perseveration
errors and a corresponding increase in RTs.

The wide, graded state of activation we observed in Experiment
1 may have been driven by parallel planning when typing normal
English text. Taking away subjects’ ability to plan should interfere
with their ability to maintain responses in a queue. In Experiment
2, we took away subjects’ ability to plan in parallel by having them
type random letter strings.

Experiment 2: Typing Random Letter Strings

In Experiment 1, we demonstrated evidence for a wide dynamic
response range for both completed and future responses when
subjects typed normal word strings. It is well known that random
strings of letters are typed much more slowly than familiar words,
and tend to be processed serially, as opposed to normal English
text, which is processed in parallel (Gentner, Larochelle, & Gru-
din, 1988; Shaffer & Hardwick, 1968). One explanation for this is
that nonwords lack higher order representations capable of acti-
vating all letters in parallel; thus, the sequencing process operates
like a slow, linear read-out process. For example, Crump and
Logan (2010b) showed that words prime the first, middle, and last
letters within a word, suggesting that word-level representations

cause parallel activation of letter units (Rumelhart & Norman,
1982). They also showed that random letter strings only prime the
first letter in the string, suggesting that letter strings without word
status do not cause parallel activation of their constituent letters.
With this in mind, we would expect the dynamic range of response
set activation to be wide for sequences that can be planned in
parallel (i.e., a word), and narrow for sequences that are planned
without parallel activation (i.e., random letter strings). To further
validate our measure we tested this prediction in Experiment 2 by
having subjects type a paragraph of random letter strings.

Method

Subjects. Fifty subjects participated in Experiment 2. One
subject failed to complete the task. Six subjects were excluded
from analysis for not meeting mean accuracy or RT criterion. The
remaining 43 subjects (mean age � 36 years, SD � 12; 32 female,
10 male, one undefined) reported having been typing for 21 years
(SD � 8 years), and started typing at 13 years old (SD � 5 years).
Thirty-five were right-handed (four left-handed, two undefined,
two both), 23 reported that they had received some type of formal
typing training during K-12 education (20 indicated “no”), and 34
reported being able to touch type (nine indicated “no”).

Apparatus and stimuli. The apparatus was the same as Ex-
periment 1. The only difference was that subjects were presented
with a paragraph of 120 randomly generated letter strings. Each
letter string was five letters in length. Every letter in the alphabet
had an equal probability of being selected for each position. Ten
paragraphs of random letter strings were generated and one was
randomly assigned to each subject.

Design and procedure. The design and procedure were iden-
tical to Experiment 1.

Results and Discussion

As with Experiment 1, RTs at each go-signal position for each
subject were submitted to an outlier elimination procedure (non-
recursive; Van Selst & Jolicoeur, 1994) that removed an average of
3% of observations. Additionally, an average of 24% of observa-
tions were removed from the analysis for trials meeting the con-
found criteria established in Experiment 1. Mean RTs for each
participant at each go-signal position were then submitted to
separate repeated measures ANOVAs, with go-signal position as
the sole factor.

Mean RTs as a function of go-signal position are displayed in
Figure 5A. The main effect of go-signal position was significant
for RTs, F(6, 252) � 90.9, MSE � 8,546, p � .001, �p

2 � 0.68. The
general pattern of RTs across go-signal positions resembled those
from Experiment 1.

We predicted that typing random letter strings would result in a
narrow range of activation for completed and future responses.
Because letters would not be planned in parallel, RTs for com-
pleted and future responses should be equally slow.

RTs. Subjects were faster at Go-Signal Position 0 (M � 625.9,
Standard Error (SE) � 23.9) compared with Go-Signal Posi-
tion �1 (M � 894.0, SE � 27.0), t(42) � �16.62, p � .001, and
Go-Signal Position �1 (M � 829.5, SE � 25.9), t(42) � 11.45,
p � .001. There was no difference in RTs at Go-Signal Posi-
tion �1 compared with Go-Signal Position �2 (M � 926.0, SE �

Figure 4. Mean proportion of perseveration errors and mean error rates,
with perseveration errors removed with standard errors as a function of
go-signal position for Experiment 1. A perseveration error occurs when the
letter in the expected go-signal position (0) is typed in place of the cued
letter.
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29.6), t(42) � �1.62, p � .11. However, subjects were faster at
Go-Signal Position �2 compared with Go-Signal Position �3
(M � 990.4, SE � 31.5), t(42) � �3.60, p � .001. Subjects were
faster at Go-Signal Position �1 compared with Go-Signal Posi-
tion �2 (M � 989.4, SE � 25.7), t(42) � 8.19, p � .001. Finally,
there was no difference in RTs at Go-Signal Position �2 com-
pared with Go-Signal Position �3 (M � 1007.8, SE � 29.8),
t(42) � 0.98, p � .34.

As with Experiment 1, we did not observe a pop-out effect
consistent with single-feature visual search. Additionally, tests for
nonlinearity demonstrated that exponential functions gave better
fits for the data from Experiment 2 (r2 � .90, p � .03, AIC �
45.97) than linear functions (r2 � .73, p � .00, AIC � 49.99).

The data from Experiment 2 were not symmetrical like Exper-
iment 1. We performed two post hoc linear contrasts to assess
differences in RTs between completed and future go-signal re-
sponses. RTs at Go-Signal Position �1 were significantly faster
than RTs at Go-Signal Positions �1, �2, and �3, t(294) �
�3.35, p � .001. Additionally, RTs at Go-Signal Positions
�1, �2, and �3 were faster than RTs at Go-Signal Positions �2
and �3, t(294) � 2.44, p � .02.

We expected that random-letter strings would not be planned in
parallel and would not show evidence of graded activation across
completed and future actions. Instead, we observed that the more
distal completed responses (Go-Signal Positions �2 and �3)
appear to be rapidly deactivated, whereas future responses appear
to show a wide, graded range of activation states. As expected,
subjects were always fastest for the most active response at Go-
Signal Position 0. Additionally, RTs at Go-Signal Position �1
were faster compared to all remaining go-signal positions, sug-
gesting that subjects experienced a priming benefit in relation to
letters at other go-signal positions when shifted back to the letter
they just typed.

It is not immediately clear whether the RTs for future responses
are at odds with prior work. Crump and Logan (2010b) primed
subjects with a random word followed by a single-letter probe that
was either the first, third, or fifth letter of the prime word. They
observed a priming effect only when the probe was the first letter
of the word, and not the third or fifth letter, suggesting that random
letter strings are not planned in parallel; however, it may be the
case that in Experiment 2, the go-signal position range was narrow
enough to enable parallel planning of future responses. This is
consistent with previous observations that show that interkeystroke

intervals for random letter strings increase in speed as the preview
window increases in size, for up to eight letters (Shaffer, 1973).

Errors. Mean error rates as a function of go-signal position
are displayed in Figure 5B. The main effect of go-signal position
was significant for errors, F(6, 252) � 13.6, MSE � 0.008, p �
.001, �p

2 � 0.24. The pattern of errors across go-signal positions
appeared roughly symmetrical for completed (�1 to �3) versus
future (�1 to �3) actions.

Figure 6A shows the proportions of perseveration errors col-
lapsed across all subjects, including those who did not make at
least one error in each position. As with Experiment 1, an ANOVA
analysis of perseveration errors was not possible because only a
few subjects committed perseveration errors at every go-signal;
however, according to independent samples t tests, Positions �1
(M � 0.91, SE � 0.05) and �1 (M � 0.84, SE � 0.06) had higher
rates of perseveration errors than Positions �2 (M � 0.87, SE �
0.07) and �2 (M � 0.61, SE � 0.09), t(108) � 2.20, p � .03,
which had higher rates than Positions �3 (M � 0.56, SE � 0.11)
and �3 (M � 0.45, SE � 0.12), t(79) � 2.27, p � .03. Figure 6B
shows the mean error rates for go-signal position after removing
perseveration errors. The difference in error rates was not signif-
icant, F(6, 252) � 1.77, MSE � 0.002, p � .16, �p

2 � 0.04. As
observed in Experiment 1, after removing perseveration errors,
error rates appear linear, falling within the range of 0.01 to 0.04.

In Experiment 2, perseveration errors were high at Go-Signal
Positions �1 and �2. In Experiment 1, we suggested that the high
rate of perseveration errors at Go-Signal Positions �1 may have
occurred because subjects occasionally missed the shift because of
the proximity of the shifted letter to the target letter. When con-
sidering the perseveration error data from Experiment 2, it may be
the case that the potent activation level of the expected letter was
directly interfering with the activation states of lesser, but still
highly active, elements in the sequence. During Experiment 2,
other than responses at Go-Signal Position 0, the next most active
responses were the response that subjects just completed (�1) and
the next two subsequent response after Go-Signal Position 0 (�1
and �2). It is possible that RTs at shifted go-signal positions
reflect the activation state of a letter within a sequence, whereas
perseveration errors reflect the potency of position. The increased
activation state for the responses at Go-Signal Positions �1
and �2 are reflected in the faster RTs at those positions compared

Figure 5. Mean reaction times (RTs; in ms) and error rates, with standard
errors as a function of go-signal position for Experiment 2.

Figure 6. Mean proportion of perseveration errors and mean error rates
with perseveration errors removed, with standard errors as a function of
go-signal position for Experiment 2. A perseveration error occurs when the
letter in the expected go-signal position (0) is typed in place of the cued
letter.
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with more distal responses. Conversely, the high rates of perse-
veration errors at those same positions reflect the competitive
influence of the expected response on those positions. This may
seem counterintuitive, in that one might expect RTs at these
positions to be comparatively slow. In a competitive queuing
model, early responses in the sequence exert a disproportionate
inhibitory influence on later responses. Furthermore, early ele-
ments are less inhibited and, as a consequence, are more active
relative to distal responses. RTs at go-signal positions where letters
may be less inhibited may be indexing the activation states of those
letters during a correct response, whereas perseveration errors at
these same positions may reflect the difficulty in inhibiting the
most active, planned response and executing a lesser, but still
highly active, keypress. This might also explain why RTs at the
most distal positions are slower and also yield lower rates of
perseveration errors. Given that more distal responses are more
inhibited, subjects were slower to respond because the response
needed to be executed from the ground up. Relatedly, persevera-
tion errors were significantly lower because, in a sense, shifting to
a more distal position may be forcing subjects to create a new plan,
and as a result, the influence of the letter they were expecting to
type becomes less of an interference. Conversely, subjects are
faster for more active elements, but when they fail, the least
inhibited element, in this case, the expected letter, tends to win the
competition for selection.

Although tests of linearity in Experiments 1 and 2 suggest that
our results were not driven by visual search, Experiments 3 and 4
were designed to independently assess the role of visual and spatial
confounds. In Experiment 3, we removed subjects’ ability to
preview by presenting them one letter of the normal paragraph at
a time, while still occasionally shifting the go-signal position. If
the graded RTs for future and completed responses in Experiments
1 and 2 were simply a result of the time it took subjects to locate
and respond to the shifted go-signal position, then we would
expect to see a similar pattern of RTs for shifted positions in
Experiment 3. In Experiment 4, we kept spatial location constant
by inserting a letter from a future or completed go-signal position
instead of shifting subjects to a different location. If RTs for future
and completed responses were driven by spatial positioning, then
we would expect to see relatively flat RTs across future and
completed go-signal positions.

Experiment 3: Typing Without Preview

A task that measures the dynamic range of response set activa-
tion should be sensitive to manipulations that vary whether or not
actions can be planned in parallel, and thus receive a wide range of
response set activation. To further validate our task, Experiment 2
used random letter strings, which are assumed to be difficult to
plan in parallel. However, the results were mixed, showing graded
activation of response set activation across future go-signal posi-
tions, yet deactivation for more distal completed responses. Ex-
periments 3 and 4 were conducted to provide another line of
validation. Wide dynamic ranges should not be possible whenever
responses cannot be planned in parallel. In Experiment 3, we
eliminated parallel planning by restricting preview of upcoming
letters in the paragraph. All of the letters in the paragraph were
hidden from view by setting their font color to the same value as
the background. Cued letters appeared one at a time in red.

Without the ability to plan, we expected to find no evidence of any
activation for completed or future actions. However, if results from
Experiments 1 and 2 were driven by visual search, then RTs may
show a similar pattern, reflecting the time it takes to find a letter
when it shifts location. In Experiment 4, we kept the spatial
location constant by inserting letters from different positions into
the expected location (Go-Signal Position 0). If the “V” pattern
from Experiments 1 and 2 were driven by spatial confounds, then
we would expect to see flat RTs at completed and future go-signal
positions.

Method

Subjects. Fifty subjects participated in Experiment 3. Eight
subjects failed to complete the task. Three subjects were excluded
from analysis for not meeting mean accuracy or RT criterion. The
remaining 39 subjects (mean age � 37 years, SD � 12; 27 female,
11 male, one undefined) reported having been typing for 19 years
(SD � 10 years), and started typing at 15 years old (SD � 7 years).
Thirty-two were right-handed (four left-handed, three undefined),
22 reported that they had received some type of formal typing
training during K-12 education (16 indicated “no,” one undefined),
and 29 reported being able to touch type (nine indicated “no,” one
undefined).

Apparatus and stimuli. The apparatus and stimuli were the
same as Experiment 1, except that the entire paragraph was never
displayed to the subject. Instead, the font color of the letters in the
paragraph was set the background gray, rendering each letter
invisible, but maintaining the position of each letter within the
paragraph. The go-signal cued each letter by turning it from gray
to red. Thus, subjects only viewed a single letter at any given time.

Design and procedure. The design and procedure was iden-
tical to Experiment 1.

Results and Discussion

As with the previous experiments, RTs in each condition for
each subject were submitted to an outlier elimination procedure
(nonrecursive; Van Selst & Jolicoeur, 1994) that removed an
average of 3% of observations from each condition. Mean RTs for
each participant at each go-signal position were then submitted to
separate repeated measures ANOVAs, with go-signal position as
the sole factor.

Mean RTs as a function of go-signal position are displayed in
Figure 7A. The main effect of go-signal position was significant
for RTs, F(6, 228) � 27.9, MSE � 3,815, p � .001, �p

2 � 0.42.
RTs. Participants were faster at Go-Signal Position �1 (M �

624.7, SE � 17.5) compared with Go-Signal Position �2 (M �
737.0, SE � 24.4), t(38) � 6.53, p � .001, and Go-Signal Position
0 (M � 748.1, SE � 22.4), t(38) � �8.22, p � .001. There was
no difference between Go-Signal Position 0 and Go-Signal Posi-
tion �1 (M � 763.7, SE � 26.8), t(38) � �1.52, p � .14,
Go-Signal Positions �1 and �2 (M � 766.4, SE � 24.1),
t(38) � �0.32, p � .75, or Go-Signal Positions �2 and �3 (M �
778.7, SE � 25.2), t(38) � �1.16, p � .26. Finally, there was no
difference between Go-Signal Positions �2 and �3 (M � 755.7,
SE � 25.6), t(38) � 1.51, p � .14.

A post hoc linear contrast confirmed that RTs at Go-Signal
Position �1 were faster than the remaining go-signal positions,
t(266) � �5.18, p � .001.
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Errors. Mean error rates as a function of go-signal position
are displayed in Figure 7B. Because no responses were planned in
parallel, there were no perseveration errors to analyze. As ex-
pected, there was no main effect of go-signal position for error
rates, F(6, 228) � 0.81, MSE � 0.0015, p � .56, �p

2 � 0.02, which
were all uniformly low.

Without the ability to plan for upcoming letters in parallel, the
data clearly show a simple influence of repetition priming. RTs are
fastest for Go-Signal Position �1, which was always a repetition
of the last response, compared with any other position, which were
all similarly slow. Error rates were equally low across go-signal
positions.

The remaining RTs for all other go-signal positions maintained
a flat distribution, as opposed to the graded activation pattern
observed in Experiments 1 and 2, even though changes in spatial
position were consistent with the previous two experiments. This
finding supports the conclusions that graded activation patterns for
future and completed actions in Experiment 1 and future actions in
Experiment 2 were driven by activation states and not visual
search time.

Experiment 4: Inserting Instead of Shifting the
Go-Signal

Experiments 3 and 4 were designed to experimentally measure
the influence of visual search and spatial confounds that may have
been present during Experiments 1 and 2. During Experiment 3,
while still shifting the go-signal position in space while limiting
the preview window, we observed evidence of repetition priming
and not visual search. However, in Experiments 1, 2, and 3,
go-signals always cued letters in different spatial positions, so it is
possible that some of our results are driven by spatial confounds.
For example, RTs could be slower as a function of spatial position
simply because the go-signal cue is more difficult to identify at
more distal positions. Experiment 3 partly addressed this issue
because cued letters were presented in the same spatial positions as
Experiments 1 and 2, yet graded RTs were not observed. Experi-
ment 4 addressed the spatial confound directly. Experiment 4 was
the same as Experiment 1 except that the go-signal was always
presented in Position 0, which was always the expected next letter
in the sequence. To test the activation states of planned or com-

pleted responses, we inserted letters from the other positions in
place of letter previously in Position 0.

Method

Subjects. Fifty subjects participated in Experiment 4. Seven
subjects failed to complete the task. Five subjects were excluded
from analysis for not meeting mean accuracy or RT criterion. The
remaining 38 subjects (mean age � 36 years, SD � 10; 22 female,
14 male, two undefined) reported having been typing for 21 years
(SD � 9 years), and started typing at 13 years old (SD � 4 years).
Thirty-three were right-handed (four left-handed, one both), 16
reported that they had received some type of formal typing training
during K-12education (21 indicated “no,” one undefined), and 28
reported being able to touch type (10 indicated “no”).

Apparatus and stimuli. Experiment 4 was the same Experi-
ment 1, except the go-signal always cued Position 0. That is, the
red letter always moved forward one spatial position in the se-
quence. However, when the go-signal was assigned to cue another
position (�3, �2, �1, 1, 2, or 3), the letter from that position was
inserted in place of the letter currently residing in Position 0.

Design and procedure. The design and procedure were the
same as Experiment 1.

Results and Discussion

As with the previous experiments, RTs in each condition for
each subject were submitted to an outlier elimination procedure
(nonrecursive; Van Selst & Jolicoeur, 1994) that removed an
average of 3% of observations from each condition. Additionally,
an average of 32% of observations were removed from the analysis
for trials meeting the confound criteria established in Experiment
1. Mean RTs for each participant at each go-signal position were
then submitted to separate repeated measures ANOVAs, with
go-signal position as the sole factor.

Mean RTs as a function of go-signal position are displayed in
Figure 8A. The main effect of go-signal position was significant
for RTs, F(6, 198) � 78.4, MSE � 9,764, p � .001, �p

2 � 0.70.
RTs. Subjects were faster at Go-Signal Position 0 (M � 512.4,

SE � 18.6) compared with Go-Signal Position �1 (M � 916.8,
SE � 34.0), t(33) � 17.64, p � .001, and Go-Signal Position �1
(M � 856.5, SE � 30.2), t(33) � �15.47, p � .001. There was no

Figure 7. Mean reaction times (RTs; in ms) and error rates, with standard
errors as a function of go-signal position for Experiment 3. Critically,
Go-Signal Position �1 refers to a repetition of the most recently completed
action.

Figure 8. Mean reaction times (RTs; in ms) and error rates, with standard
errors as a function of go-signal position for Experiment 4. The inserted
letters from Positions �3 to �3 were always inserted into Go-Signal
Position 0.
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difference in RTs at Go-Signal Position �1 compared with Go-
Signal Position �2 (M � 919.6, SE � 35.3), t(33) � �0.11, p �
.91, or at Go-Signal Position �2 compared with Go-Signal Posi-
tion �3 (M � 917.6, SE � 38.0), t(33) � 0.74, p � .94. Subjects
were faster at Go-Signal Position �1 compared with Go-Signal
Position �2 (M � 918.5, SE � 31.7), t(33) � 4.44, p � .001;
however, there was no difference in RTs at Go-Signal Position �2
compared with Go-Signal Position �3 (M � 900.4, SE � 34.2),
t(33) � �0.78, p � .44.

A post hoc linear contrast confirmed that RTs at Go-Signal
Position �1 were not significantly different than RTs at the
remaining completed and future go-signal positions, t(231) �
�1.65, p � .10.

The results did not reproduce the same trends as observed in
Experiments 1 and 2. Instead, RTs for completed and future responses
are indicative of a narrow response range. The fastest response was
always the expected letter, with completed and future responses
showing little evidence of graded activation. RTs at Go-Signal
Position �1 showed a modest priming benefit, and although RTs
at Go-Signal Position �1 were faster than Go-Signal Position �2,
linear contrasts revealed that there was no difference between
Go-Signal Position �1 and the remaining completed and future
go-signal positions.

Errors. Mean error rates as a function of go-signal position
are displayed in Figure 8B. The main effect of go-signal position
was significant for errors, F(6, 198) � 13.49, MSE � 0.015, p �
.001, �p

2 � 0.29. For the first time, error rates for completed and
future actions were above 20%.

We did not see the same pattern observed in Experiments 1 and
2. It may be the case that despite the visual search control check in
Experiment 3, spatial confounds may partly explain the results of
Experiments 1 and 2. The results from the RT data appear to
suggest that only the current response was most active. When
responding to completed and future go-signal positions, with the
exception of the recently executed response at Position �1, RTs
were equally slow. One possible conclusion is that when keeping
the position constant, the activation states for completed and future
responses of a sequence may be activated along a narrow range.
Another possibility is that the potency of the expected response at
Go-Signal Position 0 may be hiding a wide activation range. This
interpretation becomes more plausible when considering the per-
severation data.

Interestingly, error rates were above 20% for future and com-
pleted actions, which is different from what was observed in
Experiments 1 and 2. The analysis of perseveration errors suggests
that when subjects committed an error they were most likely to
type the expected letter at Go-Signal Position 0 as opposed to the
inserted letter. Figure 9A shows the proportions of perseveration
errors collapsed across all subjects, including those who did not
make at least one error in each position. As with Experiments 1
and 2, an ANOVA analysis of perseveration errors was not pos-
sible because only a few subjects committed perseveration errors
at every go-signal; however, according to independent samples t
tests, there was no difference in perseveration errors between
Positions �1 (M � 0.97, SE � 0.02) and �1 (M � 0.93, SE �
0.04), and Positions �2 (M � 0.99, SE � 0.01) and �2 (M � 0.93,
SE � 0.02), t(110) � �1.02, p � .31, nor Positions �2 and
Positions �3 (M � 0.96, SE � 0.04) and �3 (M � 0.90, SE �
0.04), t(110) � 1.41, p � .16. Figure 9B shows the mean error

rates for go-signal position after removing perseveration errors.
The difference between error rates after removing perseveration
errors was not significant, F(6, 198) � 0.86, MSE � 0.0013, p �
.86, �p

2 � 0.02. Error rates appear linear, with proportional range
of errors falling within 0.01 to 0.02.

Several models predict that position coding information can
modulate the selection of other responses in a sequence. For
example, Burgess and Hitch (1992) modeled position information
as a moving window. This enabled multiple action elements to
overlap one another, leading to serial-order errors, as well as
graded activation states from completed and future responses.
Oscillator models also take position codes into account, usually
proposing the existence of a central oscillating timing mechanism
(Brown et al., 2000; M. Treisman, Cook, Naish, & MacCrone,
1994). These models assume that item information is bound with
its position. Because position never shifted in Experiment 4, RTs
may have been high at all completed and future go-signal positions
because the expected letter, and not the inserted letter, was tightly
bound with the expected location. Subjects were forced to actively
inhibit the planned response at the expected position in order to
successfully type an unexpected letter inserted from a different
location. Accordingly, when subjects committed errors, they were
most likely to be perseveration errors, because the expected re-
sponse was always the most active and the corresponding response
was tightly bound with that position.

In summary, when typing normal English text, Experiment 1
revealed a wide, graded state of activation for completed and
future responses consistent with competitive queuing models.
When we removed their ability to plan in Experiment 2, we found
evidence of deactivation for more distal completed responses,
whereas future responses still showed a wide range of activation.
Experiment 3 was designed to serve as a manipulation check for
visual search confounds. We observed evidence for repetition
priming for the most recent response, and flat RTs at the remaining
go-signal positions. In Experiment 4, in order to address possible
spatial confounds, we occasionally inserted a future or completed
letter into Go-Signal Position 0, as opposed to shifted to a letter at
a completed or future location. We found high perseveration errors
and flat RTs at all go-signal positions except Position 0, suggesting
that the potency of a specific response at the expected location may

Figure 9. Mean proportion of perseveration errors and mean error rates
with perseveration errors removed, with standard errors as a function of
go-signal position for Experiment 4. A perseveration error occurs when the
letter in the expected go-signal position (0) is typed in place of the cued
letter.
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be hiding the wide activation range for completed and future
responses.

One alternative explanation for findings from Experiment 4 was
that the insertion of a completed or to-be-completed letter altered
the word context. Specifically, inserting a letter may have had the
effect of turning a normal string into a random letter or otherwise
nonword string. Given previous research that has demonstrated
that people are slower when typing random strings (Gentner et al.,
1988; Shaffer & Hardwick, 1968), letter insertions from distal
go-signal positions that disrupted the word context could have had
the effect of slowing down processing time as a compensatory
mechanism in order to produce accurate copy. We did not see this
effect in Experiment 1, because changes in go-signal positions
preserved the word context. One way to address this in the future
would be to create a paradigm in which when an insertion occurs,
the entire string is shifted with the insertion as well. If changing the
word context was influencing our results from Experiment 4, then
it is possible that preserving the word context while shifting distal
responses into the expected location may produce results similar to
what we observed in Experiment 1.

Our hypothesis was that activation states of completed and
future responses may fall under a wide or narrow range of activa-
tion states, based on broad predictions from several models. A
more satisfying way to make inferences about the activation states
of completed and future responses would be to establish a baseline
for responses that are not a part of the initial plan and compare RTs
at go-signal positions for unplanned responses with RTs for
planned responses. In Experiment 5, as subjects typed, occasion-
ally they were shifted to a completed or future go-signal position.
Sometimes the letter at that position was a letter they had previ-
ously typed or were planning to type. Sometimes the letter was
novel, inserted from an array of letters that were not a part of their
plan. This procedure could provide a more direct way of compar-
ing responses in the queue with responses that are not a part of the
queue.

Experiment 5: Measuring the Baseline

In the previous experiments, we used RTs as a proxy for
measuring the activation states of completed and future actions.
Our interpretation of the data was that differences in RTs at the
different go-signal positions meant that the activation state of a
letter at one position was either more or less active relative to the
activation state of a letter at another position. One important issue
that has not been addressed is the lack of a baseline for responses
that are not elements of a current action sequence. If RTs for
planned responses at future and completed go-signal positions are
faster than RTs for unplanned responses, then those responses may
be considered active relative to baseline. Conversely, if RTs for
planned responses are greater or equal to baseline, then those
activation states would be considered inhibited, or deactivated,
relative to baseline responses.

The purpose of Experiment 5 was to establish a baseline RT at
each go-signal position by occasionally having subjects type a
letter that was not a part of their initial plan. Experiment five
followed the general procedure of Experiment 1, with the excep-
tion that at each go-signal position the cued letter could be planned
or unplanned. To accomplish this goal, we adopted a method from
Crump and Logan (2010a; also see Masson, 1986), who divided

the keyboard into a checkerboard pattern to create two sets of 13
letters, and two corresponding word lists in which each word was
composed from letters from only one of the sets. The paragraph of
words displayed to subjects involved one of the word lists, such
that all of the letters were from one letter set. Critically, we
manipulated whether or not the go-signal cued a completed or
to-be-completed planned letter, or a randomly chosen unplanned
letter from the unused letter set. This allowed us to establish a
baseline for unplanned letters that we could compare to responses
that were a part of the original planned sequence. Comparing RTs
for planned responses to a baseline affords stronger inferences
about the range of activation states of completed and future re-
sponses. If future planned responses are partially activated, then
we would expect RTs for planned letters in those positions to be
faster than baseline RTs for unplanned letters in those positions.
Similarly, if completed responses are deactivated, then we would
expect RTs for planned letters in those positions to be equivalent
or even slower than RTs for unplanned letters in those positions.
Alternatively, if the patterns of graded RTs across go-signal posi-
tions in Experiments 1 and 2 are driven primarily by proximity to
the expected letter, and do not reflect response sequencing dynam-
ics, then would expect no differences in RTs between planned and
unplanned letters across go-signal positions.

We made one additional change from previous experiments to
better approximate the conditions of normal continuous typing.
Previous experiments used a randomly varying delay (100 to 300
ms) between each response and the next go-signal. As a result,
subjects may have strategically adopted a more serial style of
typing because they were forced to wait to execute each response.
Experiment 5 removed the delay entirely, such that the next
go-signal appeared simultaneously with a current response. The
removal of the delay allowed typists to resume normal typing for
consecutive keypresses at the expected go-signal location.

Method

Subjects. Fifty subjects participated in Experiment 5. Eight
subjects failed to complete the task. Seven subjects were excluded
from analysis for not meeting mean accuracy or RT criterion. The
remaining 34 subjects (mean age � 35 years, SD � 8; 17 female,
16 male, one undefined) reported having been typing for 20 years
(SD � 6 years), and started typing at 14 years old (SD � 5 years).
Thirty subjects were right-handed (four left-handed, one both), 14
reported that they had received some type of formal typing training
during K-12 education (22 indicated “no”), and 31 reported being
able to touch-type (three indicated “no”).

Apparatus and stimuli. Two arrays were created from the 26
letters of the alphabet (13 letters in each array). In order to control
for possible typing confounds related to spatial letter location
during the task, each letter array was constructed by creating two
checkerboard patterns across the keyboard. Starting with the letter
“Q,” we placed each alternating letter in one of the two arrays
(e.g., “Q” in Array 1, “W” in Array 2, “E” in Array 1). Six hundred
forty-three 4- to 7-letter words were taken from a Scrabble website
in which all of the letters of each word were either from Array 1
or 2. Importantly, letters from the first array were not used in any
of the words from the second array, and vice versa.

Design. Prior to the experiment, a 232-word paragraph was
constructed from words from one of the two arrays. Arrays were
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counterbalanced for each subject. As with the previous experi-
ments, each go-signal response was cued when the to-be-typed
letter changed from black to red. As opposed to the previous
experiments, there was no jitter delay between go-signal changes.
Subjects typed the first 10 letters, and afterward there was a 50%
chance that the next letter would be the subsequent letter in the
expected position, or would shift to a completed or future go-signal
position. Additionally, after every go-signal position change, there
was a 50% chance that a second algorithm swapped out the shifted
letter with a letter from the unplanned array, thereby replacing that
letter with a new letter that was not a part of the completed or
future action sequence. For example, if a subject typed a letter in
its expected position, and afterward the go-signal jumped three
letter locations forward, there was a 50% chance that the letter at
Go-Signal Position �3 was the same letter subjects were planning
to type (e.g., for the word “PRAWN,” subjects typed “P” and were
shifted to “W”) or was a letter inserted from the unplanned array
(subjects typed “P” and were shifted to the location where the “W”
was located, but “Q” is inserted instead). In addition to generating
RTs for unplanned responses at completed and future go-signal
positions, this method also allowed us to measure RTs for un-
planned responses at Go-Signal Position 0. After every shift or
insertion, the next four subsequent go-signal position changes
always occurred for the expected letter at the expected position.

Procedure. The design and procedure were the same as Ex-
periment 1.

Results and Discussion

As with the previous experiments, RTs at all go-signal positions
for both planned and unplanned responses for each subject were
submitted to an outlier elimination procedure (nonrecursive; Van
Selst & Jolicoeur, 1994) that removed an average of 3% of
observations. Additionally, an average of 22% of planned response
trials and 5% of unplanned response trials were removed from the
analysis meeting the confound criteria established in Experiment 1.
Mean RTs for each participant at each go-signal position, for both
planned and unplanned responses, were then submitted to separate
repeated measures ANOVAs, with condition (planned vs. un-
planned) and go-signal position as the within-subjects factors.

Mean RTs as a function of go-signal position for planned and
unplanned responses are displayed in Figure 10A. There was a

main effect of go-signal position, F(6, 198) � 22.7, MSE �
30,261, p � .001, �p

2 � 0.41, condition, F(1, 33) � 20.0, MSE �
32,804, p � .001, �p

2 � 0.38, and a go-signal by condition
interaction, F(6, 198) � 16.5, MSE � 23,419, p � .001, �p

2 � 0.33.
RTs. For planned responses, subjects were faster at Go-Signal

Position 0 (M � 532.0, SE � 12.8) compared with Go-Signal
Position �1 (M � 861.1, SE � 22.0), t(33) � �18.06, p � .001,
and Go-Signal Position �1 (M � 1,107.7, SE � 95.6), t(33) �
6.28, p � .001. There was no difference in RTs at Go-Signal
Position �1 compared with Go-Signal Position �2 (M � 885.2,
SE � 20.2), t(33) � �1.41, p � .17, or at Go-Signal Position �2
compared with Go-Signal Position �3 (M � 919.7, SE � 19.5),
t(33) � �1.97, p � .06. RTs were faster at Go-Signal Position �1
compared with Go-Signal Position �3, t(33) � 3.52, p � .001.
There was no difference in RTs at Go-Signal Position �1 com-
pared with Go-Signal Position �2 (M � 936.8, SE � 19.5),
t(33) � �1.88, p � .07, or at Go-Signal Position �2 compared
with Go-Signal Position �3 (M � 933.4, SE � 19.6), t(33) �
�0.20, p � .84.

For unplanned responses, subjects were faster at Go-Signal
Position 0 (M � 887.7, SE � 22.7) compared with Go-Signal
Position �1 (M � 951.3, SE � 26.4), t(33) � �4.31, p � .001,
and Go-Signal Position �1 (M � 950.3, SE � 26.9), t(33) � 3.73,
p � .001. There was no difference in RTs at Go-Signal Posi-
tion �1 compared with Go-Signal Position �2 (M � 956.7, SE �
26.3), t(33) � �0.29, p � .77, at Go-Signal Position �2 compared
with Go-Signal Position �3 (M � 981.5, SE � 26.2),
t(33) � �1.43, p � .16, or at Go-Signal Position �1 compared
with Go-Signal Position �3, t(33) � �1.84, p � .08. There was
no difference in RTs at Go-Signal Position �1 compared with
Go-Signal Position �2 (M � 956.4, SE � 25.7), t(33) � 0.36, p �
.72; however, RTs were faster at Go-Signal Position �2 compared
with Go-Signal Position �3 (M � 1,011.4, SE � 30.7), t(33) �
2.09, p � .04.

We compared RTs between planned and unplanned responses at
each go-signal position. RTs were faster for planned compared
with unplanned responses at Go-Signal Position �3, t(33) � 2.74,
p � .01. There was no difference at Go-Signal Positions �2,
t(33) � 0.87, p � .39, and �1, t(33) � �1.83, p � .08. RTs were
faster for planned compared with unplanned responses at Position
0, t(33) � 18.77, p � .001, Position �1, t(33) � 4.20, p � .001,
Position �2, t(33) � 3.85, p � .001, and Position �3, t(33) �
3.57, p � .001.

The RTs for planned responses were similar to what we ob-
served in Experiments 1 and 2. RTs for future responses are
indicative of a wide response range consistent with models of
parallel activation, whereas completed responses suggest a narrow
range. As with the previous experiments, the fastest response was
always the expected letter, with future responses showing a graded
state of activation and more distal completed responses showing
deactivation. RTs at Go-Signal Position �1 were likely slow
because of an artifact of the task. In the previous experiments,
there was a short jitter between changes in go-signal position. In
Experiment 5, as soon as subjects responded, the next go-signal
position was cued without delay. When subjects were forced to
respond to the �1 position during the planned condition, the letter
would have remained red, likely making the manipulation more
difficult to detect.

Figure 10. Mean reaction times (RTs; in ms) and error rates, with
standard errors as a function of go-signal position for Experiment 5 for
planned (dashed lines) and unplanned responses. The inserted letters from
Positions �3 to �3 were always inserted into Go-Signal Position 0.
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Conversely, RTs for unplanned responses do not show a range
of graded activation states. Subjects were faster at responding to
Position 0, and a little bit slower when responding to Position �3,
but for the most part, RTs for unplanned responses display a linear
trend compared with planned responses across go-signal positions,
thereby providing a stable baseline for comparison between acti-
vation states of planned versus unplanned responses. The fact that
RTs for unplanned responses did not mirror RTs for planned
responses from Experiments 1, 2, and 5 supports our previous
conclusion that RTs were not a function of visual search. If the
results from previous experiments were driven by the time it took
to locate and respond to the shifted letter, then we would have
expected to see RTs that showed a V pattern.

Importantly, when comparing RTs for planned versus unplanned
responses, we found evidence of a wide range of activation states
for future responses and a narrow activation range for completed
responses. At Go-Signal Positions 0 through �3, RTs for planned
responses were always faster than unplanned responses. This is
consistent with predictions of parallel activation suggesting that all
responses are activated simultaneously and that individual ele-
ments compete with one another for selection. RTs at Go-Signal
Positions �1 and �2 were not significantly different than baseline,
suggesting these responses are rapidly deactivated after comple-
tion; however, there appears to be some residual activation for
responses at Position �3 compared with baseline. It may be the
case that the more current completed responses are rapidly deac-
tivated so as to avoid typing those letters in error, but more distal
responses may still retain some level of activation.

Errors. Mean error rates as a function of go-signal position
for planned and unplanned responses are displayed in Figure 10B.
There was a main effect of go-signal position, F(6, 198) � 26.5,
MSE � 0.0111, p � .001, �p

2 � 0.45, condition, F(1, 33) � 11.8,
MSE � 0.0131, p � .001, �p

2 � 0.26, and a Go-Signal � Condition
interaction, F(6, 198) � 30.7, MSE � 0.0125, p � .001, �p

2 � 0.48.
Error rates were robust across go-signal position for planned and

unplanned responses. Figure 11A shows the proportions of perse-
veration errors collapsed across all subjects, including those who
did not make at least one error in each position. According to
independent samples t tests, perseveration errors were greater for
unplanned responses between Position �1 (M � 0.95, SE � 0.02)
and �1 (M � 0.81, SE � 0.04) and Positions �2 (M � 0.83, SE �

0.04) and �2 (M � 0.74, SE � 0.05), t(125) � 2.34, p � .02, but
not between Positions �2 and Positions �3 (M � 0.79, SE �
0.05) and �3 (M � 0.79, SE � 0.05), t(125) � �0.12, p � .91.
For planned responses, perseveration errors were greater between
Position �1 (M � 0.96, SE � 0.01) and �1 (M � 0.98, SE �
0.01) and Positions �2 (M � 0.82, SE � 0.04) and �2 (M � 0.87,
SE � 0.03), t(127) � 4.30, p � .001, but not between Positions �2
and Positions �3 (M � 0.84, SE � 0.05) and �3 (M � 0.75, SE �
0.05), t(127) � 1.13, p � .26. Finally, perseveration errors were
robust for unplanned responses at Go-Signal Position 0 (M � 0.88,
SE � 0.04). Figure 11B shows the mean error rates for go-signal
position for planned and unplanned actions after removing perse-
veration errors. Error rates varied from 0.01 to 0.09 at all go-signal
positions for both planned and unplanned responses.

General Discussion

The main purpose of the study was to validate a novel behavioral
measure, so the validity of interpretations needs to be considered in
detail. We broadly classified models of sequencing processes by
whether they assume a wide or narrow dynamic range of response set
activation. Our empirical goal was to validate a measure of the
momentary activation states for any given response in a response set.
Across five experiments, subjects copied text when prompted by a
go-signal that usually cued the next letter in the sequence, but some-
times cued recently completed or to-be-completed letters. The RTs to
restart typing following the go-signal were taken as an index of the
underlying activation state of the cued action.

Experiments 1 (words) and 2 (random letter strings) showed a
pattern of graded RTs across future go-signal position (0 � 1 � 2 �
3), consistent with parallel activation of actions in a planned sequence
and a wide dynamic range. RTs in Experiment 1 also showed a similar
graded pattern across past go-signal positions (0 � �1 � �2 � 3),
consistent with gradual deactivation of completed responses; how-
ever, outside of a priming benefit observed at Go-Signal Position �1,
completed RTs in Experiment 2 showed evidence consistent with a
wide dynamic range. We further investigated whether the graded
activation of RTs across go-signal positions was driven by spatial
confounds. Experiment 3 restricted preview to the cued letter, which
eliminated parallel activation of future responses, but maintained the
presentation of cued letters in different spatial positions. The results
showed only evidence of repetition priming when the go-signal cued
the previous response. Experiment 4 removed the spatial position
confound by inserting letters from distal positions into the expected
next-letter position. The results showed evidence consistent with a
narrow dynamic range, suggesting an important role for spatial codes.
Finally, in Experiment 5, we replicated our procedure from Experi-
ment 1, and also provided a baseline for comparing planned and
unplanned responses at the different go-signal positions. We observed
evidence of parallel activation for future responses consistent with a
wide dynamic range, and rapid deactivation of completed responses.
We turn to extended analyses of the evidence for a wide dynamic
range of response set activation, as well as how our experiments speak
to the sequencing processes operating in the narrow range.

Evidence for Parallel Activation and Wide
Dynamic Range

We interpret the symmetrical pattern of graded RTs across past and
future letter positions in Experiment 1 and future responses in Exper-

Figure 11. Mean proportion of perseveration errors and mean error rates,
with perseveration errors removed with standard errors as a function of
go-signal position for Experiment 5 for planned (dashed lines) and un-
planned responses. A perseveration error occurs when the letter in the
expected go-signal position (0) is typed in place of the cued letter.
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iment 2 as evidence for graded activation states for each response in
a planned sequence. An alternative view is that the pattern of RTs
reflects the time taken to visually search for the go-signal. Experiment
3 partly argues against this view because letters appeared in the same
spatial positions as previous experiments, but RTs did not vary as a
function of position. However, the absence of graded RTs here could
be explained by a parallel search process that quickly identified all
letters in the absence of any distractors (A. M. Treisman & Gelade,
1980). At the same time, even when full preview was available, it is
possible that visual search for the go-signal could occur in parallel
because the cued letter was a color based feature singleton (which are
known to pop out), and cued letters were always within close spatial
proximity to the current letter. However, we saw no evidence of a
pop-out effect. Furthermore, tests of linearity for future responses in
Experiments 1 and 2 showed that nonlinear functions provided a
better fit for our data. Finally, unplanned responses in Experiment 5
did not show a symmetrical V pattern that we observed in the other
experiments, suggesting that our overall findings were not driven by
visual search times.

The nonlinear pattern of RTs across future go-signal positions is
consistent with competitive queueing models of action sequencing.
For example, the Rumelhart and Norman (1982) model assumes
that all responses are activated in parallel, and that each response
inhibits all remaining responses (see Figure 1B). As a result,
inhibition is applied multiplicatively across positions in the se-
quence, which would translate to a graded nonlinear pattern of
activation strengths across positions.

The absence of a similar nonlinear pattern of RTs for future
go-signal positions in Experiment 4 is consistent with multiple
interpretations. Some readers may be convinced that removing the
spatial confound and showing an absence of graded RTs across
positions shows that our measure is not tapping response activation
states. On the other hand, spatial position codes may be strongly
linked to the momentary activation states of particular responses.
As a result, Experiment 4 may not index the activation states of
distal letters, but could instead measure the ensuing response
competition between the inserted and planned letter.

To test the possibility that position codes dynamically modulate
activation states, we looked at the proportion of perseveration errors
across positions for Experiments 1, 2, 4, and 5. If perseveration errors
were simply a result of subjects typing the expected letter instead of
the shifted or inserted letter, then it is reasonable to assume that
perseveration errors would be consistent across completed and future
go-signal positions; however, Experiments 1 and 5 revealed that
perseveration errors were highest at positions that were the most
proximal to Go-Signal Position 0. This may have occurred because
the response for Position 0 was always the most activated. In fact, the
further away the shifted response was from Go-Signal Position 0, the
less likely subjects were to commit perseveration errors. In Experi-
ment 2, we observed that perseveration errors occurred at go-signal
positions in which the completed and future responses may have been
most competitive with the expected response. In all cases, persevera-
tion errors were high at the fastest go-signal positions, suggesting that
letters in these positions were more active in relation to distal go-
signal positions. However, in Experiment 4, we found high rates of
perseveration errors and slow RTs at all completed and future go-
signal positons. It may be the case that when inserting a letter, as
opposed to shifting to a new location, the letter and its corresponding
position code may have been bound in a way that led to slow RTs and

high perseveration errors. Alternatively, as addressed in the discussion
for Experiment 4, it is also possible that the flat RT pattern we
observed was because inserting a letter from a distal go-signal posi-
tion disrupted the word context, which in turn led to slower RTs.

Sequencing Operations in the Narrow Range

We have focused primarily on whether sequencing models
assume that multiple responses are planned in parallel or in series,
and testing these ideas by measuring the width of the dynamic
range for response activation during sequencing. Our data show
some evidence that future responses have graded activation
strengths, and that there is a wide dynamic range in typing. At the
same time, much of the “action,” so to speak, occurs in the narrow
range. For example, models ascribe two important sequencing
functions to the completion of an action: deactivating the com-
pleted response and triggering of the next response.

In the introduction, we suggested that several sequencing models
make different general predictions about the activation states of com-
pleted and future responses. For example, Panel A of Figure 2 shows
a flat line indicating complete deactivation for previous responses,
consistent with predictions from Rumelhart and Norman (1982). We
found supporting evidence for this prediction. In Experiments 2 and 4,
we observed a priming benefit at Go-Signal Position �1; however,
RTs at Go-Signal Positions �2 and �3 were equally slow, suggesting
completed responses may be rapidly deactivated. Importantly, results
from Experiment 5 suggest that completed actions are rapidly deac-
tivated, particularly when compared with unplanned responses. Aver-
beck et al. (2002) found that deactivation for each completed line
segment gradually reduced over time within a window of 300 to 600
ms. Because we used RTs at completed and future go-signals as a
proxy for activation states, we cannot make any claims about the time
it took for a completed response to deactivate; however, RTs at
completed go-signal positions are within the window of the deacti-
vation gradients observed by Averbeck and colleagues.

Narrow-range models assume that actions are triggered by the
completion of a previous response, or perhaps an associated hier-
archical control unit. Wide-range models assume that an upcoming
action is partially activated before the response is completed, and
becomes fully activated after inhibition is released by the deacti-
vation of a completed response. Experiments 1, 2, 4, and 5 all
showed overwhelming evidence that the fastest response always
occurred when the go-signal cued the expected next letter in the
sequence (i.e., Position 0).

Input–Output Buffering

Normal typing is accomplished using a complex input–output
buffering process in which typists are thought to take in segments of
to-be-typed text while executing keystrokes for previously perceived
letters that are stored in a buffer. As a consequence, typists tend to
look n letters ahead or behind the letter they are typing. For
example, previous research using eye tracking during typing has
shown that participants’ eye-hand span is roughly �2 to �7 letter
positions away from the current letter being typed (see Inhoff &
Gordon, 1997). One possible confound with our interpretation that
RTs at unexpected go-signal positions represent the activation states
of completed and to-be-completed responses in the buffer is that RTs
at unexpected go-signal positions may be driven by failures of input
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or buffering processes prior to serial output. Taking the Rumelhart
and Norman (1982) model as an example, our behavior measures
could be influenced by input-level processing of the to-be-typed text.
For example, if a participant failed to scan ahead to letter n �3 and the
go-signal subsequently shifted to that position, then we would expect
slower RTs for that response, because that letter failed to be inputted
into the buffer. Similarly, we would also expect uniformly faster RTs
for letters in the buffer that are activated in parallel, but not yet
weighted for serial output. The present methods do not isolate the
specific contributions from these earlier stages, and resolving this
issue is an important avenue for further work.

At the same time, we suggest that participants were inputting and
buffering letters in accordance with normal typing behavior. First,
when subjects made errors, they commonly made perseveration er-
rors, typing the expected next letter rather than the letter indicated by
the go-signal. Some perseveration errors likely reflect an input prob-
lem with detecting the go-signal, presumably because subjects were
actively previewing upcoming text. Similarly, perseveration errors
also indicate successful input and buffering of the upcoming letter.
Second, the RT differences between planned and unplanned future
responses in Experiment 5 suggest that participants were successfully
inputting and buffering responses because RTs were faster for
planned than unplanned responses. Notably, planned responses
showed a gradient consistent with competitive queuing models (Estes,
1972; Rumelhart & Norman, 1982), whereas unplanned responses
were linear, providing further support that our pattern of RTs are
driven by serial output processes. Finally, go-signal shifts occurred
anywhere from one to three locations away from the expected target
positions. Inhoff and Gordon (1997) reported that the optimum fixa-
tion point was about three letters away from the expected location.
Our manipulation fit squarely within the optimum range that partici-
pants should have been previewing.

Conclusions

The major aim of this article was to provide a new behavioral
measure of the dynamic range of activation of responses during
action sequencing. We identified serial and parallel models of
action sequencing that predict wide or narrow dynamic response
ranges for planned actions. We used RT and error rate data during
a novel task that forced subjects to sometimes type an unplanned
letter at different or expected locations as a proxy for the activation
states of completed, current, and to-be-completed responses. Over-
all, our data showed that future actions are activated across a wide
dynamic range, consistent with competitive queuing model pre-
dictions (e.g., Rumelhart & Norman, 1982). In general, subjects
were fastest for the letter in the expected location, and progres-
sively slower for more distal letters from the expected location.
The graded level of activation we observed suggests that responses
were activated in parallel and inhibited in series, with earlier
responses in the sequence being more active than later responses.
Additionally, when controlling for go-signal timing in Experiment
5, completed responses were rapidly deactivated, and planned
responses were faster than unplanned responses that served as a
baseline for activation states of unbuffered responses.

An overarching goal of our method was to convince typists to
engage in normal typing behavior and then occasionally test their
performance for letters in unexpected go-signal positions. We then
used these measures of performance as an index of the activation state

of the probed response. Of course, in the process of introducing
unexpected go-signal changes, we inevitably disrupt normal typing
and perhaps induce strategies for accommodating to the new task
demands. For example, a participant might decide not to preview and
plan future responses as normal and simply wait for upcoming go-
signals before responding. Experiment 5 represented our best attempt
to induce normal typing behavior by removing the delays between
go-signals. In general, it is difficult to use behavioral measures to
index the activation state of completed or to-be-completed actions
without disturbing their dynamics with the measurement probe. It is
noteworthy that our behavioral findings corroborate the single-unit
recording data in monkeys observed by Averbeck and colleagues
(2002). They observed that prior to monkeys drawing geometric
shapes, populations of neurons that fired for each individual line
segment displayed a graded state of activation, consistent with that
line’s location in the serial order. Furthermore, firing rates for com-
pleted lines reduced to baseline within 500 ms. We are optimistic that
future work on these issues will shed light on the interaction between
timing and dynamic range, the role of position codes in response
scheduling, and further differentiate between input and output pro-
cesses in the buffer driving action activation dynamics.
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